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Problem setup

» Nonsmooth, composite optimization

minimize f(x) = h(F(x))

X

nonsmooth h: RP — R (with a known structure), smooth
F: R" — RP (expensive to evaluate).

> Idea: Build p models, one for each component of F. Use model
gradients in place of VF.

» Requires a manifold representation of h.

» Example: censored loss:

p

f(x) = Z |di — max {c;, Fi(x)}|

i=1



Computers/Simulations!
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Censored £; loss
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Manifold representation
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Manifold representation

> h(y) = max p manifolds
ie{1,....p}
> h(y) = llyllee = max |yl 2p manifolds
ie{l,....p}
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Manifold representation

> h(y) = :
() emax Y

> h(y) = IIylloo=l.enfaxP il

> h(y) = maxie, {yi} — minie, {yi}
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Manifold representation

() emax Y

> h(y) = IIylloo:ienfaxP il

> h(y) = maxie, {yi} — minie, {yi}

p
> h(y) = lyvlly = vl
i=1

p
> h(y)=_|d — max{c,y}|
=1

p manifolds

2p manifolds

|l1]|l2| manifolds

2P manifolds

3P manifolds. If p = 45,

approximately 3 x 10%! potential manifolds.

User scripts need to calculate:

F(x), F(x), H(F(x)), {Vhi(F(x)) : i € H(F(x))}, {hi(F(x)) : 7 € G},

o‘\. }'f‘; :7
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Smooth master model

gk 2 proj (O' co (Gk)) € co (Gk) s
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Smooth master model

g“ £ proj (O, co (Gk)) € co ((Gk) ,

where

chs U {IMEIVAFD}
i€lh(F(x¥))
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Smooth master model

g* £ proj (0, co (G¥)) € co (G¥),
where
Gk & U {VM(x*)Vhi(F(x*)}
i€l (F(xk))
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Smooth master model

g" £ proj (0, co (G¥)) € co (G¥),

where

Gke | {YMEF)Vh(F(x)}
i€lh(F(x¥))

or

= U (TMATA(F)

YEY i€lh(F(y))

Define the smooth master model m[: R" — R (with gradient g*) and
obtain step by (approximately) solving

minimize mf(x* + s)
S

subject to: s € B(0, Ayx)
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Better trust-region subproblem?
Instead of solving
minismize mi(x¥ + s)
subject to: s € B(0, Ay)
How about
minimize h(M(x* + s))

subject to: s € B(0, Ax)
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Better trust-region subproblem?
Instead of solving
minismize mi(x¥ + s)
subject to: s € B(0, Ay)
How about
minimize h(M(x* + s))

subject to: s € B(0, Ax)

For censored /7 loss:

p
minimize Z |di — max {c;, gi(x)}]
s
i=1

subject to: s € B(0, Ay)
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Better trust-region subproblem?
Instead of solving
minismize mi(x¥ + s)
subject to: s € B(0, Ay)
How about
minismize h(M(x* + s))

subject to: s € B(0, Ax)

For censored ¢, loss:

p
minismize Z |di — max{c;, gi(x)}]

i=1
subject to: s € B(0, Ax)
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Better trust-region subproblem?
Instead of solving
minismize mE(x* +s)
subject to: s € B(0, Ay)
How about
minismize h(M(x* + s))

subject to: s € B(0, Ax)

For censored ¢, loss:

P
mini;‘nize Z |di — max{c;, gi(x)}]

i=1
subject to: s € B(0, Ax)

Question

. Best method for solving composite nonsmooth quadratic problems?
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Measuring descent

> Descent is measured using a linearization h(¥) of some selection
function h and not h
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Measuring descent
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Measuring descent

> Descent is measured using a linearization h(¥) of some selection
function h and not h

» Must ensure information about h is in G* before taking a step
> h(k) must satisfy

PO(F() < MF(EY)  and  HO(F(K4+5) 2 A(F(+s¥)),

a HO(F(x¥)) — h(F(x* + s¥))
N m(xk) — m(xk + sk)

> Pk
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Examples of h(K)

=S IR S K
< “~-__._-- h(K)
°
F(x) F(x+s)
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Examples of h(¥)

X
=3
< \~~_~.
htd 7 -n
F(x) F(x+s)
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Examples of h(K)
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Examples of h(K)

F(x) F(x+s)
o 13 0f 15



Convergence

> If the trust region radius A is a sufficiently small multiple of the
model gradient ||g*||, the iteration is guaranteed to be successful.

> |imk%00 Ak = 0.

» Some subsequence of master model gradients g~ goes zero.

» Zero is in the generalized Clarke subdifferential of cluster points of
any subsequence of iterates with master model gradients
converging to zero.

» The same holds for cluster points of the entire sequence of iterates.



Conclusions

When optimizing functions of the form h(F(x)) when
> his “easy”
» F is “hard”

it can be advantageous to model F; and then combine those models via
known information about h.
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Conclusions

When optimizing functions of the form h(F(x)) when
> his “easy”
» F is “hard”

it can be advantageous to model F; and then combine those models via

known information about h.

jmlarson@anl.gov

Thank you!
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